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Niemann-Pick type C (NPC) disease is an autosomal
recessive disorder caused by mutations of NPC1 and
NPC2 genes. Progressive neurodegeneration that ac-
companies NPC is fatal, but the underlying mecha-
nisms are still poorly understood. In the present
study, we characterized the association of autophagic-
lysosomal dysfunction with cholesterol accumulation
in Npc1�/� mice during postnatal development. Brain
levels of lysosomal cathepsin D were significantly
higher in mutant than in wild-type mice. Increases in
cathepsin D occurred first in neurons and later in
astrocytes and microglia and were both spatially and
temporally associated with intracellular cholesterol
accumulation and neurodegeneration. Furthermore,
levels of ubiquitinated proteins were higher in endo-
somal/lysosomal fractions of brains from Npc1�/�

mice than from wild-type mice. Immunoblotting results
showed that levels of LC3-II were significantly higher in
brains of mutant than wild-type mice. Combined LC3
immunofluorescence and filipin staining showed that
LC3 accumulated within filipin-labeled cholesterol clus-
ters inside Purkinje cells. Electron microscopic exami-
nation revealed the existence of autophagic vacuole-like
structures and multivesicles in brains from Npc1�/�

mice. These results provide strong evidence that choles-
terol accumulation-induced changes in autophagy-lyso-
some function are closely associated with neurodegen-
eration in NPC. (Am J Pathol 2007, 171:962–975; DOI:
10.2353/ajpath.2007.070052)

Niemann-Pick type C disease (NPC) is a fatal neurode-
generative disorder that mainly affects children. The
pathological hallmark of NPC is the massive accumula-
tion of cholesterol and other lipids in late endosomes and
lysosomes.1,2 In most cases (approximately 95%), the
disease is caused by mutations in the NPC1 gene3 and
the remainders by mutations in the NPC2 gene; both
genes encode proteins that play important roles in intra-
cellular cholesterol transport.4–6 Neurodegeneration in
NPC shares a number of pathological features with those
observed in Alzheimer’s disease (AD), although the
structures most affected in NPC are cerebellum and
brainstem. Both diseases exhibit cholesterol metabolism
impairment,7–10 endosomal/lysosomal dysfunction,5,8,11 and
tauopathies.12–15 Interestingly, the neurofibrillary tangles, the
most common form of tauopathies, found in NPC are indistin-
guishable from those found in AD brains.12,14 In both dis-
eases, levels of free cholesterol are positively correlated with
the incidence of intraneuronal neurofibrillary tangles.16,17

Several lines of evidence have established lysosomal
dysfunction as an early-onset neuropathological feature
of AD. Levels of lysosomal cathepsin D in neurons are
increased in AD vulnerable regions before the onset of
major pathology.18 Cathepsin D up-regulation correlates
on a cell-by-cell basis with other markers of early-stage
AD, including decreased levels of the synaptic vesicular
protein synaptophysin and increased levels of intraneu-
ronal neurofibrillary tangles.19,20 Experimentally induced
lysosomal dysfunction is associated with rapid formation
of neurofibrillary tangles in hippocampal slices cultured
from apolipoprotein E knockout mice.21 Cytoplasmic pres-
ence of cathepsin D can induce release of cytochrome c
from mitochondria and activation of proapoptotic factors,
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which leads to caspase-dependent apoptosis, also referred
to as type 1 programmed cell death.22–24

Lysosomes also participate in type 2 programmed cell
death, referred to as autophagic cell death, which is
defined by the presence of autophagic morphology.25,26

Neuronal death with features of autophagy has been
observed during normal development27 and in patholog-
ical conditions, such as in AD28,29 and in Parkinson’s
disease.30 On the other hand, neuroprotective function of
autophagy has also been implicated in certain neurode-
generative diseases, such as Huntington’s disease. A
recent study reported the existence of autophagic fea-
tures in Purkinje cells in Npc1�/� mice.31 To investigate
further the roles of autophagy-lysosome system in neuro-
degeneration in NPC, the present study determined lev-
els and localization of the lysosomal enzyme cathepsin D
and of autophagic activity and the potential association of
autophagic-lysosomal dysfunction with accumulation of
cholesterol and neurodegeneration in brains of Npc1�/�

mice.

Materials and Methods

Mice

Breeding pairs of BALB/cNctr-npc1NIH mice heterozy-
gous for Npc1 (�/�) were obtained from Jackson Labo-
ratories (Bar Harbor, ME) and maintained in our animal
facility in accordance with National Institutes of Health
guidelines and protocols approved by the Institutional
Animal Care and Use Committee with care to minimize
distress to the animals. Mouse breeding and genotyping
were performed as previously described.32 Animals were
sacrificed at postnatal weeks 1, 2, 4, and 8 (four to eight
animals for each age group) under deep anesthesia (100
mg/kg sodium pentobarbital) by perfusion for immuno-
histochemical and histological studies or by decapitation
for biochemical analyses. For histological studies, ani-
mals were perfused with phosphate-buffered saline
(PBS) followed by 4% paraformaldehyde. Brains were
removed and incubated with 15% sucrose followed by
30% sucrose before being sectioned at 25 �m with a
microtome. Coronal sections were stored in a cryopro-
tective solution at �20°C before being processed for
immunohistochemical studies.

Subcellular Fractionation

Brains from Npc1�/� and their wild-type littermates were
dissected in ice-cold artificial cerebrospinal fluid and
homogenized in homogenization buffer [homogenization
buffer-EDTA: 3 mmol/L imidazole, 250 mmol/L sucrose,
and 1 mmol/L ethylenediamine tetraacetic acid (EDTA),
pH 7.4] containing protease inhibitors (Sigma-Aldrich, St.
Louis, MO); homogenates were centrifuged for 10 min-
utes at 1500 � g. The sucrose concentration of the col-
lected postnuclear supernatant was adjusted to 40.6%
by the slow addition of 62% sucrose in homogenization
buffer-EDTA. Postnuclear supernatant was then carefully
overloaded with 1.5 ml of 35% and 1.0 ml of 25% sucrose

in homogenization buffer-EDTA, and the samples were
centrifuged in an SW 55 rotor (Beckman Instruments,
Inc., Palo Alto, CA) at 14,000 � g for 90 minutes at 4°C.
Subcellular fractions were collected from the top of the
tube. The late endosome/lysosome-enriched fraction was
localized in the upper interface, containing 25% sucrose
and homogenization buffer, and the early endosome-
enriched fraction in the middle interface containing 35
and 25% sucrose. The lower interface containing 40.6 to
35% sucrose was enriched in plasma membranes and
other heavy membrane compartments.

Western Blots

Electrophoresis and immunoblotting were performed fol-
lowing conventional procedures. In brief, after protein
concentration was determined, proteins (40 to 60 �g) of
postnuclear supernatant from different brain regions [cer-
ebellum, brainstem (including interbrain, midbrain, and
hindbrain), hippocampus, and cortex] or of other subcel-
lular fractions were denatured by boiling for 5 minutes in
a sample buffer (2% sodium dodecyl sulfate, 50 mmol/L
Tris-HCl pH 6.8, 10% 2-mercaptoethanol, 10% glycerol,
and 0.1% bromphenol blue) and separated by electro-
phoresis on sodium dodecyl sulfate-polyacrylamide gels
(12%), after which proteins were transferred to nitrocellulose
membranes. Nitrocellulose membranes were incubated
with primary antibodies for 12 to 16 hours at 4°C; immuno-
reactivity was visualized by using enhanced chemilumines-
cence (ECL Plus kit and reagents; Amersham Pharmacia
Biotech, Piscataway, NJ). Antibodies used included anti-
cathepsin D (1:1000; EMD Biosciences, San Diego, CA),
anti-cathepsin B (1:100; Santa Cruz Biotechnology, Santa
Cruz, CA), anti-rab7 (1:1000; Santa Cruz Biotechnology),
anti-ubiquitin (1:500; Zymed, Carlsbad, CA), and anti-LC3
serum (gift from T. Yoshimori, National Institute of Genetics,
Mishima, Shizuoka, Japan33). Levels of different bands
were analyzed by using the National Institutes of Health
Image program (Bethesda, MD). Statistical significance
was determined by two-tailed Student’s t-test.

Activity Assay of Cathepsins B and D

Whole homogenates of brainstem, cerebellum, or hip-
pocampus from Npc1�/� and wild-type mice were used
to analyze the activity of cathepsins B and D using flu-
orogenic immunocapture activity assay kits (EMD Bio-
sciences) according to the kit instructions.

Immunohistochemistry

Sagittal sections from cerebellum and coronal sections
from the rest of the brain of animals from different ages
were simultaneously processed for immunostaining. Im-
munohistochemistry was performed using the avidin-bi-
otin horseradish peroxidase complex method. In brief,
free-floating sections were first incubated in 10% normal
horse serum (for monoclonal antibodies) or 3% normal
goat serum (for polyclonal antibodies) diluted in PBS with
0.1% Triton X-100 for 1 hour at room temperature, fol-
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lowed by incubation with primary antibodies overnight at
4°C. Antibodies used were anti-cathepsin D (1:500; EMD
Biosciences) and anti-cathepsin B (1:100; Santa Cruz
Biotechnology). After three washes in PBS, sections were
incubated with corresponding biotinylated secondary an-
tibodies (1:400; Vector Laboratories, Burlingame, CA) in
5% normal horse serum or 1.5% normal goat serum so-
lution for 2 to 3 hours, then in avidin-biotin horseradish
peroxidase complex diluted in PBS for 45 minutes. Per-
oxidase reaction was performed with 3,3�-diaminobenzi-
dine tetrahydrochloride (0.05% in 50 mmol/L Tris-HCl
buffer, pH 7.4) as chromogen and 0.03% H2O2 as oxi-
dant. Free-floating sections were mounted on precoated
slides (SuperPlus; Fisher Scientific International Inc.) and
air-dried. Sections were then dehydrated in graded eth-
anol and finally covered with Permount (Fisher Scientific).

Double-labeling immunohistochemistry was done with
sections first incubated with primary antibodies [rabbit
anti-cathepsin D in combination with either rat anti-F4/80
(1:1000; Serotec, Raleigh, NC) or mouse anti-calbindin
(1:1000; Abcam, Cambridge, MA)], then with corre-
sponding secondary antibodies conjugated with Alexa
Fluor 488 or Alexa Fluor 594. Both secondary antibodies
were purchased from Molecular Probes, Eugene, OR.

Filipin Staining

Filipin has been demonstrated to specifically stain free
cholesterol because treatment with cholesterol oxidase
results in a complete loss of fluorescence.34 Brain tissue
sections were washed with phosphate-buffered saline
and incubated in the dark with 125 �g/ml filipin in PBS for
3 hours under agitation at room temperature. After wash-
ing in PBS, some sections were further processed for
immunostaining with anti-calbindin or -LC3 (1:3000; Ab-
gent, San Diego, CA) antibodies and corresponding sec-
ondary antibodies conjugated with Alexa Fluor 594.

Images of immunostained sections from different
brain regions were visualized using a Zeiss micro-
scope (Axioskop 2 Mot Plus) and digitized via a Zeiss
digital photo camera (AxioCam Hrc) and the Axiovision
program, version 3.1 (Zeiss), was used to capture and
save digitized images. Digitized images were then as-
sembled in Photoshop (version 7; Adobe Systems, Moun-
tain View, CA) with only the brightness adjusted to match
other panels in a given figure. Images of double fluores-
cent labeled sections were acquired by using a Nikon
confocal microscope (Nikon TE 2000U with D-Eclipse C1
system; Melville, NY).

Electron Microscopy Analysis

Electron microscopy analysis was performed as previ-
ously described.35 In brief, animals were perfused with
an ice-cold solution of 0.1 mol/L phosphate buffer, pH
7.4, containing 1.5% paraformaldehyde and 1.5% glutar-
aldehyde. Cerebellum blocks were transferred to 2.5%
glutaraldehyde in 0.1 mol/L phosphate buffer, pH 7.4, at
4°C for 24 hours, rinsed overnight in the phosphate
buffer, postfixed with 1% osmium tetroxide in phosphate

buffer for 2 hours, followed by dehydration and embed-
ded in epoxy resin. Ultrathin sections were prepared
using a Reichert ultramicrotome, contrasted with uranyl
acetate and lead citrate, examined under a Philips
CM120 transmission electron microscope at 80 kV.

Results

Increased Levels of Cathepsin D in Brains of
Npc1�/� Mice during Postnatal Development

Cathepsin D is synthesized as an inactive 52- to 53-kd
proenzyme; cathepsin D activation produces a 48-kd
(single chain) intermediate and mature forms at 34 and
14 kd (heavy and light chains, respectively).36,37 Immu-
noblotting studies using anti-cathepsin D antibodies re-
vealed an early-onset increase in levels of cathepsin D
(both single chain and heavy chain) in all brain regions
tested. At 2 weeks postnatal, levels of single chain ca-
thepsin D (Figure 1A, arrows) in brainstem, cerebellum,
cerebral cortex, and hippocampus of Npc1�/� mice were
274 � 7%, 190 � 5%, 176 � 12%, and 199 � 5% of those
measured in Npc1�/� mice, respectively (means � SEM,
n � 5, P � 0.001; Figure 1B). Levels of single chain-
cathepsin D remained elevated at 4 weeks with further
increase being only evident in cerebellum (Figure 1B).
Changes in heavy chain-cathepsin D (Figure 1A, �) were
similar to those observed for the single chain isoform
(Figure 1, A and B).

Immunohistochemical results revealed significant in-
creases in cathepsin D immunoreactivity throughout the
brain in 1-week-old Npc1�/� mice. In contrast to the
pattern observed in wild-type mice, numerous darkly la-
beled cells were found in cerebellum of Npc1�/� mice,
and most of them were located in white matter (compare
Figure 2, B with A), suggesting that they were glial cells.
High magnification examination showed that cathepsin D
immunoreactivity was also moderately increased in Pur-
kinje cells in Npc1�/� (Figure 2D) compared with wild-
type mice (Figure 2C). The number of cathepsin D-immu-

Figure 1. Cathepsin D levels in brain of Npc1�/� and Npc1�/� mice during
postnatal development. A: Representative images of blots of samples from
2-week-old animals labeled with anti-cathepsin D antibodies. Arrows cor-
respond to the “single chain” isoform of cathepsin D, whereas lines indicate
the “heavy form” of cathepsin D (see Results for details). B and C: Quanti-
tative results for levels of single chain cathepsin D and heavy chain cathepsin
D isoforms, respectively. Data are presented as percentage of values from
Npc1�/� mice and are means � SEM. n � 5; *P � 0.05, and **P � 0.01.
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noreactive cells was also increased in the ventral
posterior nuclei of the thalamus at 1 week (Figure 2F)
compared with that in Npc1�/� mice (Figure 2E), and it
was further increased by 4 weeks. By 8 weeks, the ventral
posterior nuclei of the thalamus were filled with anti-
cathepsin D-immunopositive cells (Figure 2H). Higher
magnification images showed that although cathepsin
D-immunoreactive products existed in small granules
that were scattered in cell bodies in the ventral posterior
nuclei of the thalamus of Npc1�/� mice (Figure 2I), those
in Npc1�/� mice were present in larger punctates that
often clustered together (Figure 2J). Furthermore, higher
cytoplasmic levels of cathepsin D immunoreactivity were
observed around these punctates. Immunohistochemical
and immunoblotting results showed that levels of another
lysosomal hydrolase, cathepsin B, were also increased in
mutant mice as compared with wild-type mice (Figure 2,
K–M). Cathepsin D activity in homogenates from brain-
stem of 4-week-old Npc1�/� mice was about 2.4 times
higher than that from Npc1�/� mice (n � 3 for Npc1�/�

and n � 4 for Npc1�/� mice; P � 0.01). Cathepsin B
activity also increased in samples from hippocampus
(295 � 8%; P � 0.01) and cerebellum (187 � 3%; P �

0.01) of 8-week-old Npc1�/� mice (n � 5) compared with
Npc1�/� mice (n � 5).

Double immunofluorescence staining was used to deter-
mine the cellular and subcellular localization of cathepsin D
in mutant mice. At 4 weeks, cathepsin D-immunoreactive
granules were observed in cell bodies of calbindin-immu-
nopositive Purkinje cells in Npc1�/� mice (Figure 3A, the
asterisk in bottom panels), whereas very few cathepsin D
positive granules were found in the cerebellum of Npc1�/�

mice (Figure 3A, top panels). In the cerebellum of 4-week-
old Npc1�/� mice, cathepsin D immunoreactivity was also
found in reactive microglia identified with antibodies against
the macrophage marker F4/80 antigen (data not shown). By
8 weeks, cathepsin D-labeled granules accumulated
mainly in the apical processes of small cells dispersed
among Purkinje cells in wild-type mice; from their position
and morphology, these cells resembled Bergman glia (Fig-
ure 3B, arrows). Cathepsin D immunoreactivity in Bergmann
glia in Npc1�/� mice was similar to that in wild-type mice
(Figure 3B). In the cerebellum of 8-week-old Npc1�/� mice,
cathepsin D immunoreactivity was also observed in F4/80-
labeled reactive microglia (Figure 3B, mg); at this postnatal

Figure 2. Distribution of cathepsin D and B in cerebellum and thalamus of Npc1�/� mice during postnatal development. Cerebellar (A–D) and thalamic (E–L)
tissue sections were prepared from Npc1�/� (A, C, E, G, I, and K) and Npc1�/� (B, D, F, H, J, and L) mice at postnatal week 1 (A–F), 4 (K and L), and 8 (G–J)
and were immunostained with anti-cathepsin D (A–J) or anti-cathepsin B (K and L) antibodies. Higher magnification images show that in Npc1�/� mice (I)
cathepsin D immunoreactive products are mainly located in small-sized granules, whereas in Npc1�/� mice they are present in larger puncta and their surrounding
cytoplasmic structures (J). M shows immunoblots of cathepsin B-labeled samples from brainstem of 4-week-old mice. ml, molecular layer; pl, Purkinje layer; gl,
granular layer; VPT, ventral posterior nucleus of thalamus. Scale bar � 50 �m (A and B); 12.5 �m (C–H and K and L).
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Figure 3. Cellular localization of cathepsin D in cerebellar cortex at 4 and 8 weeks postnatal. A: Double immunofluorescence staining using antibodies against cathepsin
D (red) and calbindin (green) in cerebellum of 4-week-old Npc1�/� (top panels) and Npc1�/� (bottom panels) mice. DAPI (blue) was included in the mounting medium
to label nuclei. B: Double immunofluorescence staining using antibodies against cathepsin D (red) and F4/80 (green; a marker for microglia) in cerebellum of 8-week-old
Npc1�/� (top panels) and Npc1�/� (bottom panels) mice. *, Purkinje cells; arrows, Bergmann glia; mg, microglia. Scale bar � 10 �m.
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age, microglia became larger and rounder and invaded
both the Purkinje cell layer and the molecular layer.

Abnormal Subcellular Protein Distribution in
Brains of Npc1�/� Mice

The subcellular localization of various proteins was de-
termined by combining subcellular fractionation and im-
munoblotting analysis. Cathepsin D levels were markedly
higher in the late endosomal/lysosomal fractions in mu-
tant compared with wild-type mice (Figure 4, top panel).
Levels of the small GTP-binding protein Rab7, which
participates in the maturation of autophagic vacu-
oles,38,39 were higher in the late endosomal/lysosomal
fractions but lower in the early endosomal fractions in
Npc1�/� compared with wild-type mice. As a close link
between autophagy and protein ubiquitination has previ-
ously been reported,40,41 levels of ubiquitinated proteins
in different subcellular fractions were determined by im-
munoblotting using anti-ubiquitin antibodies. Proteins re-
siding in the late endosomal/lysosomal fractions were
highly ubiquitinated (Figure 4, bottom panel). Ubiquitin
immunoreactive products were smeared from the top to
the middle part of the gel resulting in a typical staining
pattern that generally implies polyubiquitination.

Increased Levels of the Mammalian Autophagic
Protein LC3-II in Brains of Npc1�/� Mice

Lysosomal dysfunction perturbs normal protein degra-
dation and amino acid recycling, which could result in

a state of “cellular amino acid starvation,” the most
common cause of autophagy. To determine the status
of autophagic activity in brains of Npc1�/� mice, levels
of the microtubule-associated protein 1 light chain 3
(LC3), a mammalian homologue of the yeast autoph-
agic protein Atg8, were assessed in various brain re-
gions by immunoblotting. Like Atg8, LC3 is modified
via a ubiquitination-like system33,42; LC3 is first
cleaved in its carboxyl terminal and becomes LC3-I,
which is further modified by Atg7 and Atg3 into a
membrane-bound form, LC3-II.42 Modification of LC3 is
essential for the formation of autophagosomes; thus
LC3-II has been widely used as an autophagosomal
marker.33 Although brain levels of LC3-I in mutant mice
did not significantly differ from that in wild-type mice,
levels of LC3-II in 2-week-old mutant mice were signif-
icantly higher than those in wild-type mice (Figure 5).
This difference was even greater in 4-week-old ani-
mals. Interestingly, elevation of LC3-II was more prom-
inent in areas that are more sensitive to NPC-type
injury. The LC3-II/LC3-I ratio exhibited similar changes
as those of LC3-II in brain of Npc1�/� mice compared
with those in wild-type mice, further confirming that
only LC3-II was altered.

Combined calbindin immunofluorescence and filipin
staining confirmed that at postnatal week 4, accumu-
lation of cholesterol in the cerebellum was mainly in
Purkinje cells (Figure 6A, arrows in bottom panels).
Combined LC3 immunofluorescence and filipin stain-
ing showed that although there was virtually no LC3
immunopositive granules in wild-type mice at 4 weeks,
occasional LC3-immunopositive clusters were found in
the apical dendrites of Purkinje cells filled with filipin-
labeled free cholesterol in Npc1�/� mice (data not
shown). Interestingly, by 8 weeks LC3 immunopositive
granules were found scattered in the soma of Purkinje
cells in wild-type mice (Figure 6B, top panels),
whereas in mutant mice, smaller LC3 granules aggre-

Figure 4. Abnormal protein distribution and ubiquitination in brain of
Npc1�/� mice. Immunoblots of samples from different fractions labeled with
anti-cathepsin D [single chain and heavy chain] and pro-cathepsin D (arrow
in top panel), -rab7 (middle panel), or -ubiquitin (ubi, bottom panel) anti-
bodies. Note the marked increase in cathepsin D in fraction 1 in samples from
Npc1�/� mice. Note also the marked increase in levels of ubiquitinated proteins
in endosomal/lysosomal fraction in the mutant mice. Interface 1 contains mem-
brane from late endosome/lysosomes, interface 2 contains mainly early endo-
somes, and interface 3 contains other membrane structures. Western blots of
subcellular fractions are representative of two experiments; each included four
animals from each genotype. The results were very similar in both experiments.

Figure 5. LC3-II levels in brains of Npc1�/� mice during postnatal devel-
opment. A: Representative images of blots labeled with anti-LC3 serum.
Levels of LC3-II (B) and the ratio of LC3-II/LC3-I (C) are higher in mutant
mice, especially in brainstem (BS) and cerebellum (CB); moderate increases
were observed in cortex (CX) and hippocampus (Hipp). Data are presented
as percentage of values from Npc1�/� mice and are means � SEM. n � 4;
*P � 0.05, and **P � 0.01.
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gated with cholesterol clusters at one pole of Purkinje cells (Figure 6B, asterisks in bottom panels) or in some

Figure 6. Cholesterol accumulation and sequestration of LC3 in Purkinje cells in Npc1�/� mice. A: Localization of filipin-stained free cholesterol (blue) in
calbindin-immunopositive Purkinje cells (red) in cerebellum from 4-week-old Npc1�/� (top) and Npc1�/� (bottom) mice. Note the accumulation of cholesterol
in Purkinje cells in mutant mice but not in wild-type mice. Anti-NeuN (green) was used to label neurons. B: Combined LC3 immunostaining (red) with filipin
staining (blue) in 8-week-old Npc1�/� (top) and Npc1�/� (bottom) mice. Top panels show LC3-positive puncta present in Purkinje cells of 8-week-old Npc1�/�

mice; inset is a higher magnification image showing the subcellular distribution of LC3 puncta. Bottom panels show three-dimensional colocalization of LC3 with
cholesterol in Purkinje cells of an 8-week-old mutant mouse. Scale bar � 10 �m.
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densely packed small cells. Colocalization of LC3
with cholesterol was confirmed by orthogonal three-
dimensional analysis of individual Purkinje cells
(Figure 6B).

Ultrastructural Changes in Brains of
Npc1�/� Mice

As ultrastructural examination by transmission electron
microscopy remains the most convincing and standard
method to detect autophagy,43 the morphology of intra-
cellular inclusions in brain of Npc1�/� mice was further
evaluated by electron microscopy. Purkinje cells in the
cerebellum of 6-week-old wild-type mice had a centrally
located nucleus (Figure 7A) with stacks of perinuclear
Golgi complex (Figure 7, A and B), polyribosomes, rough
endoplasmic reticulum and mitochondria that were dis-
tributed relatively evenly in the cytoplasm (Figure 7).

Spherical or oval-shaped lysosomes (Figure 7, A, C, and D)
were also observed in the cytoplasm of Purkinje cells in
wild-type mice. Electron microscopy analysis of Purkinje
cells from 6-week-old Npc1�/� mice revealed a different
feature: numerous intracellular inclusion bodies with differ-
ent sizes and shapes accumulated in one side of the cell
body and pushed a kidney-shaped nucleus to the other
side (Figure 8A) and a cluster of endoplasmic reticulum and
mitochondria aggregated along the indent side of the nucleus.
High-magnification images showed that these inclusion bod-
ies were mostly membranous vacuoles with double mem-
branes (arrowheads) or multilamellated electron-dense mate-
rial (Figure 8, arrows). In addition, abnormal multivesicular
profiles (Figure 8) similar to the polymembranous cytoplas-
mic bodies described in human NPC disease were also
common. Interestingly, lysosome-like structures with homo-
geneous filling of moderate levels of electron-dense mate-
rials, as those observed in wild-type mice, seemed to dis-

Figure 7. Ultrastructure of Purkinje cells in Npc1�/� mice. A: A Purkinje cell in the vicinity of granule cells in a 6-week-old Npc1�/� mouse. B: Stacks of Golgi
apparatus are present in a Purkinje cell. C and D: Lysosome-like structures exist in Purkinje cells. ER, endoplasmic reticulum; G, Golgi apparatus; L, lysosome;
M, mitochondria; Ng, nucleus of granule cell; Npc, nucleus of Purkinje cell. Scale bars � 2 �m (A); 1 �m (B–D).
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Figure 8. Ultrastructure of Purkinje cells in Npc1�/� mice. A: A Purkinje cell in a 6-week-old Npc1�/� mouse. Numerous vacuoles (arrowheads) of different
sizes with various levels of electron-dense materials are present in the cytoplasm. B: Stacks of Golgi apparatus are clustered in the cytoplasm. C–H: Morphology
of various membranous vacuoles. Some of them are with double membranes (arrowheads), whereas others have multilamellated structures (arrows). Scale
bars � 2 �m (A); 1 �m (B–H).
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appear in mutant mice. Aggregation of membranous
vacuoles was also observed in myelinated Purkinje cell
axons that were located among granule cells; these vacu-
oles clustered with mitochondria and formed axonal sphe-
roids (Figure 9B). Finally, membranous vacuoles were also
observed in endothelia in capillaries located among parallel
fibers and numerous synapses (compare Figure 10, B to A).

Discussion

Early-Onset Lysosomal Abnormality May
Contribute to Neurodegeneration in
Npc1�/� Mice

Results from the present study indicated that abnormal
levels of the lysosomal enzyme cathepsin D occurred
early during postnatal development in Npc1�/� mouse
brain. Increases in levels of both single chain and heavy
chain cathepsin D isoforms were clearly detected by
immunoblotting in all brain areas examined at 2 weeks
postnatal. Both isoforms possess catalytic activities,36,37

suggesting that cathepsin D activity might be increased
in these areas in mutant mice. Indeed, enzymatic assay

confirmed that cathepsin D activity was increased in the
brainstem. Likewise, activity of another lysosomal hydro-
lase, cathepsin B, was also increased in the brains of
mutant mice. However, the highest increases in cathep-
sin D levels were observed in the brainstem and cerebel-
lum, two regions that exhibit early and marked neurode-
generation. Immunohistochemistry analyses indicated
that increases in cathepsin D occurred both in neurons
and in glial cells; dense cathepsin D immunoreactivity
was observed in the soma of Purkinje cells of Npc1�/�

mice by 2 weeks postnatal, whereas clear glial localiza-
tion was prominent in several brain regions at 4 weeks,
results which are in agreement with those reported in an
earlier study44 and with the early-onset inflammatory re-
sponse we previously reported.32 Enhanced cathepsin D
immunostaining occurred mainly in brain structures ex-
hibiting both accumulation of intracellular free cholesterol
and neurodegeneration. Double immunofluorescence
analysis showed that enhanced cathepsin D was present
in both neurons and glia at 4 weeks but mainly in glial
elements by 8 weeks postnatal.

Figure 9. Axonal pathology in Npc1�/� mice. A: A myelinated axon of a
Purkinje cell axon exists in the vicinity of two granule cells in a 6-week-old
wild-type mouse. B: An axonal spheroid in a myelinated Purkinje cell axon
is located among granule cells in a 6-week-old Npc1�/� mouse. Note that a
cluster of mitochondria is surrounded by vacuoles accumulated within the
spheroid. Scale bars � 2 �m. Figure 10. Capillary pathology in cerebellum of Npc1�/� mice. A capillary

is surrounded by parallel fibers and synapses in the cerebellum of a 6-week-
old wild-type (A) or a mutant (B) mouse. Note the membranous inclusions in
the endothelial cell in the mutant mouse. Insets show synapses. Scale bars �
2 �m.
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Increases in number of secondary lysosomes and
changes in levels of lysosomal enzymes have previously
been associated with brain aging and age-related neu-
rodegeneration.45 In particular, increased cathepsin D
levels occur in AD brains before the onset of major pa-
thology, and this was correlated on a cell-by-cell basis
with decreases in synaptic proteins and with the pres-
ence of one of the disease’s hallmarks, neurofibrillary
tangles.19,20 Furthermore, pharmacological suppression
of cathepsins B and L resulted in increase in cathepsin
D,46,47 lysosomal proliferation, formation of meganeurites
(axon swellings that were often located proximal to the
cell body) in cultured rat hippocampal slices,35,48 and in
tau hyperphosphorylation and generation of neurofibril-
lary tangles in cultured hippocampal slices from apoli-
poprotein E-deficient mice.21 Furthermore, the compro-
mise of lysosomal membrane and subsequent leakage of
cathepsin D into cytoplasm are early events in amyloid �
peptide treatment-induced cell death in cultured hip-
pocampal neurons.49 These results have supported the
hypothesis that lysosomal dysfunction contributes to AD-
type neuropathologies. A recent study from Nixon’s lab-
oratory29 showed that extensive macroautophagy might
contribute to changes in lysosomal function in AD. Thus
our results further expand the previously noted similari-
ties in neuropathological mechanisms between NPC and
AD and suggest therefore that lysosomal dysfunction
may contribute to NPC type neurodegeneration.

Abnormal Autophagic Activity and Protein
Ubiquitination in Brains of Npc1�/� Mice

Impairment in cholesterol transport induced by NPC1
mutations is associated with abnormal vesicle trafficking
and redistribution of presenilin,50 glycosphingolipids,51

rab7,52,53 and annexin II,54 although the underlying
mechanism has remained elusive. Immunoblotting anal-
ysis revealed an early-onset increase in levels of LC3-II, a
widely used marker for autophagy. Levels of this protein
were particularly high in the brainstem and cerebellum,
two brain regions exhibiting the severest neuronal death,
which suggests that autophagy may contribute to neuro-
degeneration. Increases in autophagic stress were fur-
ther confirmed by ultrastructural detection of autophago-
some-like vacuoles that were prominent in brains of
Npc1�/� animals but uncommon in wild-type mice, find-
ings that are consistent with results from a recent re-
port.31 We previously showed that levels of inactive
GSK-3� were markedly increased in Npc1�/� mouse
brains and this increase was closely associated with
inactivation of nuclear factor �B signaling in brains of
Npc1�/� mice during early development.55 Sequestra-
tion of GSK-3� by autophagy may contribute to inhibition
of this kinase, which also explains the predominant lyso-
somal location of the enzyme.55 Relocation of GSK-3 to
lysosomes could also result from enhanced chaperone-
mediated autophagy, a possibility that needs to be fur-
ther explored. It has previously been reported that, al-
though GSK-3� was located predominantly in the cytosol
of SH-SY5Y cells, its active form was disproportionately

higher in nuclei and mitochondria.56 The active form of
another kinase, extracellular signal-regulated kinase 1/2,
was also localized in the mitochondria and autophago-
somes in Lewy body disease.57 It is conceivable that
changes in subcellular localization of these kinases could
alter their activities; however, further experiments are
needed to clarify this issue. Interestingly, proteins in the late
endosomal/lysosomal fractions of brains from Npc1�/�

mice were also highly ubiquitinated. Protein ubiquitination, a
type of post-translational protein modification, is generally
used to deliver targeted proteins for degradation through
the proteasome.58 In addition to this “classic” route for
protein breakdown, ubiquitination of membrane integral
proteins with one ubiquitin (monoubiquitination) directs
these proteins to multivesicular bodies then to lysosomes
for degradation.59 However, lysosome-degraded proteins
are thought to be deubiquitinated before import into the
lysosome. Immunoblotting results showed that proteins ac-
cumulated in late endosomal/lysosomal fractions were
mostly polyubiquitinated; these proteins should be de-
graded in proteasomes located in the cytoplasm. How
these proteins are delivered to lysosomes is not clear. Mu-
tation of NPC1 proteins not only leads to accumulation of
cholesterol in late endosomal/lysosomal compartments but
also results in abnormal distribution of proteases along the
endocytic pathways60 as well as leakage of cathepsins into
the cytoplasm, which would lead to lysosomal dysfunction
and incomplete digestion of “cargos.” As a compensative
response, autophagic activity would be increased. How-
ever, due to lysosomal dysfunction, LC3 and other proteins
in autophagolysosomes cannot be as efficiently degraded
as under normal conditions,61,62 which leads to further in-
crease in accumulation of undigested proteins.

Cholesterol Accumulation-Associated
Autophagic-Lysosomal Dysfunction May
Contribute to Neurodegeneration in
Npc1�/� Mice

Several lines of evidence have indicated that autophagic
cell death is involved in cell death that normally occurs
during postnatal development in the nervous system27

and in several neuronal degenerative diseases and ani-
mal models of these diseases.28–30 Expression of �-
synuclein with the same mutations as those found in
early-onset Parkinson’s disease in a cultured cell line
induced massive accumulation of autophagic vacuoles
and impairment of the ubiquitin-proteasome system.63

Ultrastructural examination revealed that both apoptotic
and autophagic features were present in degenerating
neurons of the substantia nigra in Parkinson’s disease
patients.30 In the case of AD, an earlier study reported
the existence of active caspase 3 in autophagic vacu-
oles, which led the authors to propose that autophagy
might be neuroprotective in AD.28 However, a more re-
cent study by Nixon and colleagues29 demonstrated that
autophagic vacuoles were abundant in degenerating
neurites and were specifically colocalized with neurofi-
brillary tangles in perikarya. These findings support the
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involvement of autophagy in neurodegeneration. In vitro
experiments showed that trophic factor withdrawal in-
duced Purkinje cell death with increased autophagy,64

whereas autophagy inhibition prevented both increased
vacuolation and loss of Purkinje cells. In vivo evidence
supporting a role of autophagy in neurodegeneration also
came from studies of lurcher mice. Selective Purkinje cell
death in lurcher mice is caused by mutations in the �2
glutamate receptor (GluR�2).65 Additional experiments
demonstrated that mutations in GluR�2 resulted in en-
hanced autophagy, possibly by interactions between the
mutated receptors and the autophagic protein Be-
clin1.65,66 These results provided strong evidence for a
direct link between autophagy and Purkinje cell death in
lurcher mice. As autophagy is generally followed by the
fusion of lysosomes with autophagosomes and formation
of autophagolysosomes, in which the autophagic com-
ponents are degraded.67 The beneficial or detrimental
effect of autophagy may depend on the functional status
of compartments downstream of the autophagic path-
way. Defects in completing autophagy could result in
accumulation of autophagosomes and autophagolyso-
somes, which could impair cell function. Furthermore,
accumulation of autophagolysosomes could feedback on
lysosomal function and induce lysosomal membrane per-
meabilization and translocation of cathepsins to the cy-
tosol, a process implicated in cell death induced by
various insults.49,68 Release of cathepsins from lyso-
somes into cytosol could also initiate caspase-dependent
apoptosis via activation of proapoptotic factors such as
Bax, Bid, and caspases, as in the case of staurosporine-
induced cell death.22–24 Cleavage of the microtubule
associated protein tau by cytosolic cathepsin D has been
proposed to participate in AD pathogenesis and trans-
port failure due to impairment in microtubule formation is
postulated to contribute to accumulation of autophago-
somes/autophagolysosomes in AD brain.29

In addition to demonstrating enhanced autophagic ac-
tivity in brains of Npc1�/� mice, results from the present
study showed an abnormal subcellular distribution of
LC3-labeled autophagosomes. In contrast to the notion
that autophagy is a reaction to starvation, appreciable
amounts of autophagosomes existed in Purkinje cells of
8-week-old wild-type mice, suggesting that autophagy
may contribute to the maintenance of normal morphology
and function of neurons. This notion is supported by the
recent discoveries that knocking out two critical proteins
of the autophagy machinery, Atg5 and Atg7, resulted in
massive neurodegeneration.69,70 In Purkinje cells of
Npc1�/� mice, LC3-labeled autophagosomes aggre-
gated and colocalized with cholesterol clusters, indicat-
ing an abnormal autophagy-lysosome system. It is con-
ceivable that cholesterol accumulation in the endosomal/
lysosomal system impairs autophagosome fusion with
lysosomes. It is also possible that accumulated choles-
terol “traps” the autophagy machinery and other proteins
in late compartments of the endocytic pathway, thereby
impairing cell function. The fact that Purkinje cell in mu-
tant mice seemed to lack classic lysosomes as observed
in wild-type mice indicates an abnormal autophagic-ly-
sosomal system in the Npc1�/� mice. The hypothesis

that lysosomal dysfunction redirects autophagy toward
cell death is supported by the finding that inhibition of
lysosome fusion with autophagic vacuoles in starved
cells induced an early-onset autophagic cell death fol-
lowed by classic apoptosis.71,72

In summary, the present study presented evidence
that increases in brain levels of lysosomal cathepsins B
and D occurred early during postnatal development in
brains of Npc1�/� mice, in particular in areas that exhib-
ited early-onset neurodegeneration. Changes in lysoso-
mal function were accompanied with relocation of ubiqui-
tinated proteins in endosomes/lysosomes. Redistribution
of these proteins may result from enhanced autophagic
activity, which was demonstrated by immunoblotting and
immunofluorescence analysis of LC3 and ultrastructural
detection of autophagic vacuoles. These results provide
the first evidence that accumulation of cholesterol alters
autophagy-lysosome function and diverts this system to-
ward neurodegeneration in NPC.
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